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Abstract
Oscillators

∑
ωka

†
kak with interactions h/2

∑
Vka

†
ka

†
−k + c.c. and∑

Vk1,k2k3a
†
k1

ak2ak3 + c.c. are discussed as a function of a threshold parameter h,
where it is especially investigated to take resonant terms Vk1,k2k3 with
ωk1 − ωk2 − ωk3 ≈ 0 properly into account. A unitary transformation is
formulated to transform the Hamiltonian into E0 +

∑
ω̂k(h)a

†
kak + · · ·, where

the remaining interactions do not contain products of creation operators or
annihilation operators only and vanish for Vk1,k2k3 → 0. The new frequencies
ω̂k(h) are evaluated for weak three-particle couplings in terms of the parameters
of the Hamiltonian. As expected, the frequencies ω̂k(h) are renormalized by
damping rates and frequency shifts in the case of small spacings of the wave
vectors, and the threshold of h for ω̂k(h) to break down, is essentially changed
by the damping rates.

PACS numbers: 05.30.Jp, 02.70.Rr, 05.45.Xt

1. Introduction

Driven dissipative systems are still one of the fascinating topics in statistical physics.
Systems subjected to nonequilibrium conditions show phenomena such as pattern formation,
instabilities and chaotic motion [1]. Quite often and very successfully one describes these
phenomena on a phenomenological level, e.g. by hydrodynamic or transport equations. One
should however keep in mind that fully systematic concepts based on first principles are still
missing, apart from approaches using assumptions such as linear response or local equilibrium.

Such missing links become obvious when one considers strongly driven magnetic systems.
It is known for decades that instabilities occur under strong driving [2] but the type of motion
3 Permanent address: School of Mathematical Sciences, Queen Mary/University of London, Mile End Road, London
E1 4NS, UK.
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beyond the instability is still unclear [1, 3–6]. There exist phenomenological approaches for
treating spin wave instabilities [7]. But these concepts do not take damping in a systematic
fashion into account.

In fact, nonequilibrium statistical operators for thermodynamic systems may be obtained
from first principles directly from the driven Liouville equation [8, 9]. The price one has to
pay lies in the development of suitable perturbation schemes which treat driving and damping
in a systematic way. We are going to address this question here. Since we are interested in
the main features of such a perturbation expansion we focus to a large extent on static fields
so that the approach can be reduced to the investigation of effective Hamiltonians. Such a
limitation is however often not severe since the time-dependent case can be treated frequently
in a similar fashion by applying some version of averaging [10].

Motivated by the physics of ferromagnetic magnons, we consider a system of oscillators
which are coupled by interactions h/2

∑
Vka

†
ka

†
−k + c.c. and

∑
Vk1,k2k3a

†
k1

ak2ak3 + c.c. + · · ·.
In the magnetic case, these types of interaction arise from the dipole–dipole interaction and
external magnetic fields [4, 11]; however, we will not apply to a specific realization of the
parameters in our Hamiltonian. The coupling h is considered to be the external variable of
interest.

For Vk1,k2k3 = 0 and vanishing higher interactions, it is well known [12] that one can use
a Bogoliubov transformation for the creation and annihilation operators or a corresponding
unitary transformation of the Hamiltonian, to obtain decoupled oscillators with frequencies√

ω2
k − h2|Vk|2. Such an approach implies that the interaction strength is restricted to the

range h2 < min
{
ω2

k

/|Vk|2
}
. Thus, if this minimum is extremely small, neglected interactions

will be important. From dynamic equations of expectation values for ak and a
†
k, one can see

that these remaining interactions essentially enter into the threshold of h by damping rates
increasing the bare value [7]. This point is essential, if min

{
ω2

k

/|Vk|2
} = 0, so that without

damping there is no range of stability.
The aim of this paper is to present a static4 treatment of the Hamiltonian, along the lines

without three-particle interactions, so as to provide an approach to the threshold problem for
h in the interacting case, without setting up dissipative equations of motion for expectation
values. In particular we investigate, how damping rates can appear in the parameters of a
transformed Hamiltonian. This can be considered as a first step to find a static access also in
the range of h beyond the modified threshold, although one cannot expect, that such an attempt
will be less complex than discussing equivalent nonlinear dynamic equations.

An idea for a static treatment of the Hamiltonian would be, to perform the standard
Bogoliubov transformation to new creation and annihilation operators, â

†
k = uk(h)a

†
k +

vk(h)a−k , and to handle the transformed interaction terms by perturbation theory. This
procedure, however, is not adequate, as without carrying out infinite summations, h is restricted
to values below the bare threshold. Furthermore, when h approaches the bare threshold, the
parameters uk(h) and vk(h) of the critical wave vectors tend to infinity, so that there are
transformed interaction coefficients which diverge. On the other hand, a generalization of
the Bogoliubov transformation with a

†
k as an infinite series of products of new creation and

annihilation operators or vice versa, will be extremely difficult. This is why we choose an
alternative route, and start with a unitary transformation of the original Hamiltonian, so that
the terms a

†
ka

†
−k + c.c. are removed, but higher orders of the interactions are included in the

unitary transformation from the beginning.
In section 2 we define the desired unitary transformation and show, how the new

frequencies ω̂k can be found, whereas in section 3 we evaluate these frequencies for weak
4 In this context the terminus static will be used for time-independent unitary transformations, whatever the way they
are calculated.
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Vk1,k2k3 by using correlation functions or their Markovian approximations, respectively. The
main results of the perturbation expansion are summarized in section 4. Our purely algebraic
approach presented here is so flexible that it can be applied immediately to dynamical models
under strong non equilibrium conditions. In the outlook, section 5, we will show that the
presented technique will be useful for treating the steady states of a periodically driven
ferromagnet. Thus, our approach resembles to some extent averaging procedures which have
proved to be fruitful in nonlinear dynamics [10].

2. Formal theory

We consider a bosonic Hamiltonian

H = Hharm + Hin + hH(1) = H(0) + hH(1) (1)

where

Hharm = h̄
∑

k

ωka
†
kak (2)

Hin = h̄
∑
k1k2k3

(
Vk1,k2k3a

†
k1

ak2ak3 + V ∗
k1,k2k3

a
†
k2
a
†
k3

ak1

)
+ · · · (3)

H(1) = h̄/2

(∑
k

Vka
†
ka

†
−k + V ∗

k aka−k

)
. (4)

Translation invariance is assumed which means that the coefficients Vk1,k2k3 vanish unless
k1 −k2 −k3 = 0. The dots in (3) indicate higher-order interactions which preserve the vacuum
state as an eigenvector and ensure a discrete energy spectrum of H(0). The separation of the
Hamiltonian H into H(0) and hH(1) has formal reasons only, and does not indicate different
orders of magnitude. We assume however, that the interactions such as Vk1,k2k3 in H(0) are
weak, and that the eigenvalue E = 0 of H(0) is non-degenerate, which means that the vacuum
state |0〉 is the only eigenvector with eigenvalue 0. This can always be achieved by a slight
change of some parameters in the higher-order interactions of Hin.

2.1. Structure of the transformed Hamiltonian

We consider the Hamiltonian (1) and want to transform it by a unitary transformation into a
Hamiltonian Ĥ, so that Ĥ is diagonal in the basis of H(0), or more generally in the case of
degeneracy, that

[Ĥ,H(0)] = 0. (5)

From this commutator and the vacuum state |0〉 of H(0),

H(0)|0〉 = 0 (6)

we can draw some conclusions as to the structure of Ĥ. Combining equations (5) and (6) we
find

H(0)Ĥ|0〉 = 0 (7)

which means that Ĥ|0〉 is an eigenvector of H(0) with eigenvalue 0. As this eigenvalue is
proposed to be non-degenerate, the state Ĥ|0〉 must be proportional to |0〉,

Ĥ|0〉 = c|0〉. (8)
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Hence the transformed Hamiltonian Ĥ written in normal ordering cannot contain products of
creation operators only. As it is Hermitian, terms with products of annihilation operators only
cannot occur either. Claiming that the unitary transformation preserves translation invariance,
finally we must have

Ĥ = E0 + h̄
∑

k

ω̂ka
†
kak + h̄

∑
k1k2k3

(
V̂k1,k2k3a

†
k1
ak2ak3 + V̂ ∗

k1,k2k3
a
†
k2
a
†
k3

ak1

)
+ · · · (9)

where the dots indicate interactions of higher order.

2.2. Choice of unitary transformation

For the calculation of the desired unitary transformation we use the standard adiabatic
formulation [13], but take such a form that in evaluating Ĥ we need not separate singular
phase factors. This can be achieved in the following way. Introduce the time-dependent
Hamiltonian

H(t) = H − exp(−εt)hH(1) (10)

with ε > 0 and consider the unitary transformation generated by

∂

∂t
U(t, t0) = −ih̄−1H(t)U(t, t0) (11)

with

U(t0, t0) = 1. (12)

Then the Tani equations [13] for the interaction representation,

UI (t, t0) = exp(ih̄−1H(∞)t)U(t, t0) exp(−ih̄−1H(∞)t0) (13)

allow us to factor UI (0,∞) into a product of two unitary operators

UI (0,∞) = T (ε)O(ε) (14)

so that T (0) exists and transforms the basis of H(∞) into the basis of H(0), whereas O(ε)

contains the singular phase factors and commutes with H(∞). For our choice of H(∞) = H
and H(0) = H(0) it follows from (14) that

UI (0,∞)HUI (0,∞)† = T (ε)HT (ε)† (15)

exists for ε → 0+ and commutes with H(0). Hence the transformation of H into

Ĥ = T (0)HT (0)† = lim
ε→0+

UI (0,∞)HUI (0,∞)† (16)

has all properties we need. The translation invariance is conserved as follows from the
generator (11). The expression for Ĥ can further be simplified by replacing the two-time limit
in equation (16) by a one-time limit and going back to the SchrödingerU(0, t) of equation (11).
This is possible as the following holds:

UI (0, t)HUI (0, t)† = (UI (0, t) − UI (0,∞))H(UI (0, t)† − UI (0,∞)†)

+ UI (0, t)HUI (0,∞)† + UI (0,∞)HUI (0, t)†

− UI (0,∞)HUI (0,∞)†. (17)

Regarding equation (17) and UI (0, t)† = UI (t, 0) together with equation (13) we therefore
may rewrite equation (16) as

Ĥ = lim
ε→0+

lim
t→∞U(t, 0)†HU(t, 0). (18)
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This is our basic relation, but some comment on degeneracy should be made. The
transformation properties of UI (0,∞) and the decomposition (14) are usually proved for
a non-degenerate spectrum of H(∞) which by some additional interaction always can be
reached. In our case, however, we will admit degeneracy from the beginning so as to be able
to apply the formalism also for Hin = 0. It is not difficult to see from the Tani equations that
(14) can be generalized to a degenerate spectrum of H(∞), so that (18) still exists. It therefore
remains to show, that (18) commutes with H(0). This property can also be deduced from the
expansion of (18) into powers of H(1) for fixed H(0) and will explicitly be demonstrated in
appendix A. Thus we conclude that (18) and (5) generally hold, as long as both H(0) and H
have discrete spectra and a perturbation expansion is possible. Then in our case (18) must
have the form (9).

2.3. Liouville formulation

For the evaluation of Ĥ it is convenient to use a Liouville description. Let us introduce the
Liouville operator corresponding to the Hamiltonian by the commutator

L · · · = h̄−1[H, . . .] (19)

and in the same way the Liouvillians corresponding to the parts (1) of H and H(t). Defining
U(t) in Liouville space by

U(t) · · · = U(t, 0)† · · ·U(t, 0) (20)

we may rewrite equation (18) as

Ĥ = lim
ε→0+

lim
t→∞ U(t)H (21)

where it follows from equations (20) and (11) that
∂

∂t
U(t) = iU(t)L(t). (22)

Using equations (19) and (22), the Hamiltonian (21) may be rewritten as

Ĥ = H(0) + hH(1) + lim
ε→0+

∫ ∞

0

∂

∂t
U(t)(H(0) + hH(1)) dt

= H(0) + hH(1) − i lim
ε→0+

∫ ∞

0
exp(−εt)U(t)hL(1)H(0) dt

= H(0) + hH(1) − i lim
ε→0+

W(ε)L(1)H(0)h (23)

where

W(s) =
∫ ∞

0
exp(−st)U(t) dt (24)

denotes the Laplace transform of the evolution operator. According to equations (22) and (10)
it obeys

sW(s) − 1 = i(W(s)(L(0) + hL(1)) − W(s + ε)hL(1)). (25)

3. Special system—transformation of the Hamiltonian

In this section we calculate Ĥ for the case of the Hamiltonian (1). The key idea consists in
restricting the basis in Liouville space to the subspace which is relevant in the case without
internal interaction. This means that matrix elements in Liouville space are factored in a way
which is exact for the system with Hin = 0. For simplicity we restrict to the case that the
Hamiltonian is invariant to the transformation

{
ak → a−k, a

†
k → a

†
−k

}
, or ωk = ω−k and

corresponding relations for the other coefficients. A generalization is straightforward.
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3.1. Approximation scheme

For the calculation of Ĥ from equation (23) we must find −iW(ε)L(1)H(0). Here we rewrite
equation (23) as

Ĥ = lim
ε→0

{H(0) + iε(L(0) + iε)−1H(1)h − i{W(ε) − i(L(0) + iε)−1}L(1)H(0)h} (26)

where L(1)H(0) = −L(0)H(1) has been employed. Since the last contribution is already of
higher order in h we are going to neglect the interaction Hin in H(0) which just gives rise to a
small additive contribution5.

The idea for our approximation scheme results from the Laplace transform W(s) (25)
written in the form

W(nε) = i(L(0) + inε)−1 + (W(nε + ε) − W(nε))L(1)(L(0) + inε)−1h. (27)

It shows that there are two aspects, the mapping by L(1) and by the resolvents. Consider the
space spanned by the basis vectors a

†
kak, a

†
−ka−k, a

†
ka

†
−k, aka−k, 1. Then the operator L(1) does

not lead out of this space, and without internal interaction Hin = 0, these basis vectors
are eigenvectors of the resolvents. Therefore in this case, the system for W(mε)Fν ,
Fν ∈ {

a
†
kak, a

†
−ka−k, a

†
ka

†
−k, aka−k, 1

}
is closed.

Our approximation now consists in restricting (L(0) + inε)−1Fν to the contribution
proportional to Fν in normal ordering, or in other words, we keep the bare eigenvectors
of the resolvents, and replace the eigenvalues by ‘diagonal elements’. In formal terms the
approximation means

(L(0) + inε)−1Fν = Fν(F̃ν |(L(0) + inε)−1Fν) + · · ·
Fν ∈ {

a
†
kak, a

†
−ka−k, a

†
ka

†
−k, aka−k

} (28)

where for expressing the coefficients in such an expansion we have used an inner product for
operators A,B:

(A|B) = Tr(A†B) (29)

and suitable dual operators F̃ν . Using, e.g., Glauber states it is quite a simple task to obtain
such dual elements of normally order products. In our case, it is sufficient to note that

˜
a
†
ka

†
−k = a

†
ka

†
−k|0〉〈0| ãka−k = |0〉〈0|aka−k ã

†
kak = a

†
k|0〉〈0|ak − |0〉〈0|. (30)

For algebraic reasons, it is useful to work with linear combinations of the Fν . Let us
define

G0
k = a

†
kak + a

†
−ka−k

G+
k = |Vk|−1

(
Vka

†
ka

†
−k + V ∗

k aka−k

)
(31)

G−
k = |Vk|−1(Vka

†
ka

†
−k − V ∗

k aka−k

)
then we have the exact relations

L(1)G0
k = −2|Vk|G−

k L(1)G+
k = 0 L(1)G−

k = 2|Vk|
(
G0

k + 1
)

(32)

and the approximations of the resolvents (28) read

(L(0) + inε)−1G0
k = G0

kw
00
k (nε)

(L(0) + inε)−1G+
k = G+

k w++
k (nε) + G−

k w−+
k (nε) (33)

(L(0) + inε)−1G−
k = G+

k w+−
k (nε) + G−

k w−−
k (nε)

5 Such a term finally gives rise to a renormalization of the many-particle interactions in the effective Hamiltonian.
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with

w00
k (nε) = w00

−k(nε) = 〈0|ak

{
(L(0) + inε)−1a

†
kak

}
a
†
k|0〉

w++
k (nε) = w−−

k (nε) = −inε〈0|aka−k

{
[(L(0))2 + n2ε2]−1a

†
ka

†
−k

}|0〉 (34)

w+−
k (nε) = w−+

k (nε) = 〈0|aka−k

{
L(0)[(L(0))2 + n2ε2]−1a

†
ka

†
−k

}|0〉.
The physical meaning of the approximations (33) to (34) can be summarized as follows:
the neglected terms vanish with Hin → 0, so the approximation is useful for weak internal
interactions. On the other hand, due to the normal ordering, the matrix elements w

µν

k (nε)

contain contributions of all orders in Hin, which is important for dealing with the resonant parts
of the interaction. For the following treatment in the next subsection no further approximations
are needed, but it must be shown that the resulting equations are compatible with the limit
ε → 0.

3.2. The limit ε → 0

Led by the form of equation (26) we introduce the static fluctuation:

Gν,n
k (ε) = −i[(W(nε) − i(L(0) + inε)−1]L(1)Gν

k h

+ i〈0|{[(W(nε) − i(L(0) + inε)−1]L(1)Gν
k

}|0〉h ν = 0,− (35)

and establish a set of equations for these quantities. The Hamiltonian (26) can be written as

Ĥ = E0 + H(0) + 1/2
∑

k,ν=±
h̄|Vk|Gν

k lim
ε→0

iεwν+
k (ε) + 1/2

∑
k

h̄ωkG0,1
k (0+) + · · · (36)

and the set of equations for Gν,n
k (ε) is directly obtained from equations (27) and (33) yielding

G0,n
k (ε) = −2|Vk|w−−

k (nε)h
{
G−,n+1

k (ε) − G−,n
k (ε)

}
+ I0,n

k (ε) (37)

G−,n
k (ε) = 2|Vk|w00

k (nε)h
{
G0,n+1

k (ε) − G0,n
k (ε)

}
+ I−,n

k (ε) (38)

where the inhomogeneous terms are given by

I 0,n
k (ε) = −4|Vk|2

{
w00

k (nε + ε) − w00
k (nε)

}
w−−

k (nε)h2G0
k (39)

and

I−,n
k (ε) = −4|Vk|2

{
w+−

k (nε + ε) − w+−
k (nε)

}
w00

k (nε)h2G+
k

− 4|Vk|2
{
w−−

k (nε + ε) − w−−
k (nε)

}
w00

k (nε)h2G−
k . (40)

Solving for G0,n
k (ε) we eliminate G−,n

k (ε) to obtain

G0,n
k (ε) = −4|Vk|2w−−

k (nε)w00
k (nε + ε)h2{G0,n+2

k (ε) − G0,n+1
k (ε)

}
+ 4|Vk|2w−−

k (nε)w00
k (nε)h2{G0,n+1

k (ε) − G0,n
k (ε)

}
+ I0,n

k (ε) − 2|Vk|w−−
k (nε)

{
I−,n+1

k (ε) − I−,n
k (ε)

}
h. (41)

In this equation the limits ε → 0 can be treated. One uses the fact that in the matrix elements
w−−

k (nε) (cf equation (34)) there is an explicit factor ε, and L(0) produces energy differences
with respect to the vacuum state only which have been assumed to be different from zero.
Therefore in equation (41) the products w−−

k (nε)w00
k (nε + ε) are finite, although w00

k (nε)

diverges with ε → 0,

lim
ε→0

w00
k (nε)w−−

k (mε) = −m/n lim
ε→0

〈0|ak inε
{
(L(0) + inε)−1a

†
kak

}
a
†
k|0〉

× 〈0|aka−k[(L(0))2 + m2ε2]−1a
†
ka

†
−k|0〉

= −m/n〈0|ak

{
Pa

†
kak

}
a
†
k|0〉〈0|aka−k

{
(L(0))−2a

†
ka

†
−k

}|0〉 (42)
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where P is the projector onto the null space of L(0):

P = lim
ε→0

iε(L(0) + iε)−1. (43)

As a consequence, with the abbreviation

ĥ2
k = 4|Vk|2〈0|ak

{
Pa

†
kak

}
a
†
k|0〉〈0|aka−k

{
(L(0))−2a

†
ka

†
−k

}|0〉h2 (44)

equation (41) for ε → 0 yields

G0,n
k (0+) = n

n + 1
ĥ2

k

{
G0,n+2

k (0+) − G0,n+1
k (0+)

} − ĥ2
k

{
G0,n+1

k (0+) − G0,n
k (0+)

} − ĥ2
k

1

n + 1
G0

k .

(45)

The solution can be written as

G0,n
k (0+) = a(n, ĥk)G0

k (46)

with

a(n, ĥk) = −
∞∑

m=1

n!

(n + 2m − 1)!

1

2m − 1

(
(2m)!

m!

)2

4−mĥ2m
k . (47)

For a(n = 1, ĥk) the power series can be summed to yield

a(1, ĥk) =
√

1 − ĥ2
k − 1 (48)

so that equation (36) finally reads

Ĥ = E0 + H(0) + 1/2
∑

k

h̄ωk

(√
1 − ĥ2

k − 1

)
G0

k . (49)

The third term in equation (36) vanishes. The parameters appearing are determined by the
spectrum of L(0) and its eigenvectors. In the case of Hin = 0 one observes that

Pa
†
kak = a

†
kak (50)

and

L(0)a
†
ka

†
−k = 2ωka

†
ka

†
−k (51)

so that equation (49) correctly reduces to the well-known result of the Bogoliubov
transformation

Ĥ = E0 +
∑

k

√
ω2

k − |Vk|2h2a
†
kak (Ĥin ≡ 0). (52)

For Hin 
= 0 the eigenvalues 2ωk of L(0) split and the width of this splitting is contained in the
threshold parameter ĥ2

k .

3.3. Threshold parameter ĥk in the limit �k → 0

Having found the transformed Hamiltonian (49) we will evaluate the parameters ĥk arising
for a small spacing of the wave vector components �k by taking their asymptotic values
�k → 0 (thermodynamic limit). For �k → 0 the energy spectrum of H(0) will become
dense, so we express our parameters by time-dependent correlation functions which then can
be taken in their Markovian form. In the definition (44) of ĥk, the expression of interest is
given by 〈0|ak

{
Pa

†
kak

}
a
†
k|0〉〈0|aka−k

{
L(0)−2a

†
ka

†
−k

}|0〉. For decreasing �k the second factor
of the product will diverge, as eigenvalues of H(0) will approach zero, while the first factor is
expected to tend to zero. We therefore treat the product as a whole.
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Using Laplace transform, equation (44) can be written as

ĥ2
k = |Vk|2h2 lim

ε→0

(∫ ∞

0
exp(−εt)〈0|ak

{
a
†
k(t)ak(t) + a

†
k(−t)ak(−t)

}
a
†
k|0〉 dt

×
∫ ∞

0
exp(−εt)〈0|aka−k

{
a
†
k(t)a

†
−k(t) + a

†
k(−t)a

†
−k(−t)

}|0〉 dt

)
(53)

where

ak(t) = exp(iL(0)t)ak = exp(ih̄−1H(0)t)ak exp(−ih̄−1H(0)t) (54)

denotes the Heisenberg dynamics. The correct order of the limits, i.e. first ε → 0 and
then �k → 0 is in general important for our considerations. Employing the properties of
Laplace transforms (cf appendix B) we can however show that we can neglect here the factors
exp(−εt) provided that in the thermodynamic limit the time-dependent correlation functions
in the integrands decay to zero for t → ∞ sufficiently fast. Thus the result essentially
corresponds to a change of the order of the limits.

The correlation functions in (53) will be calculated by expanding the Heisenberg operators
a
†
k(t) into powers of the strength of the interaction Hin for fixed one-particle correlation

functions �k(t) [14]

a
†
k(t) = a

†
k�k(t) + · · · (55)

where

�k(t) = 〈0|{ak exp(iL(0)t)a
†
k

}|0〉 = 〈0|ak exp(i/h̄H(0)t)a
†
k|0〉. (56)

Inserting the lowest order of (55) into (53) which corresponds to a factoring according to
Wick’s theorem, and using the Markovian approximation for �k(t),

�k(t) = exp(iωkt + i�ωkt − �kt) (57)

one finally obtains from (53)

ĥ2
k = 4|Vk|2h2

∫ ∞

0
|�k(t)|2 dt × Re

∫ ∞

0
�k(t)�−k(t) dt

= |Vk|2 h2

(ωk + �ωk)2 + �2
k

. (58)

This result shows that the values of ĥ2
k are lowered by the damping rates. The explicit

damping rates and frequency shifts may be derived from Mori’s theory [15] or other methods
of many-body theory yielding in lowest order

�k1 =
∑
k2k3

2|Vk1,k2k3 |2πδ
(
ωk1 − ωk2 − ωk3

)
(59)

�ωk1 =
∑
k2k3

2
∣∣Vk1,k2k3

∣∣2
Pr

1

ωk1 − ωk2 − ωk3

. (60)

In some regions of wave numbers k the simple form (59) for �k may vanish, as energy and
momentum cannot be simultaneously conserved. In such cases higher-order interactions of
Hin must be considered in �k , but this does not affect the validity of equation (58).
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4. Result and discussion

We have performed a unitary transformation of the given Hamiltonian H into a Hamiltonian
Ĥ which according to equations (49) and (31) can be written as

Ĥ = E0 + h̄
∑

k

ω̂k(h)a
†
kak + h̄

∑
k1k2k3

(
V̂k1,k2k3(h)a

†
k1

ak2ak3 + V̂k1,k2k3(h)∗a†
k2
a
†
k3

ak1

)
+ · · · .

(61)

The frequencies ω̂k(h) follow from the preceding section and will be discussed later. The
higher-order interactions V̂k1,k2k3(h) have not been considered explicitly. Their origin and
order of magnitude will be considered at the end.

First, we will discuss the general result (61) from a point of view which makes
the connection to the usual Bogoliubov transformation more transparent. According to
equation (16) we have Ĥ = T (0)HT (0)†. Therefore, introducing a unitary transformation of
the creation, or annihilation operators, respectively, by

â
†
k = T (0)†a

†
kT (0) (62)

we can perform T (0)†ĤT (0) and express the original Hamiltonian in terms of operators (62).
From equations (1) and (61) we explicitly find

h̄
∑

k

ωka
†
kak + hh̄/2

(∑
k

Vka
†
ka

†
−k + V ∗

k aka−k

)
+ h̄

∑
k1k2k3

(
Vk1,k2k3a

†
k1

ak2ak3 + V ∗
k1,k2k3

a
†
k2
a
†
k3

ak1

)
+ · · ·

= E0 + h̄
∑

k

ω̂k(h)â
†
kâk

+ h̄
∑
k1k2k3

(
V̂k1,k2k3(h)â

†
k1

âk2 âk3 + V̂k1,k2k3(h)∗â†
k2

â
†
k3
âk1

)
+ · · · . (63)

Inspection of equation (63) shows that the passage to the new creation and annihilation
operators removes the interaction hH(1) in the Hamiltonian, and gives rise to frequencies
and interactions which depend on the coupling strength h. Thus the transformation used has
the feature of a Bogoliubov transformation, although we did not try to evaluate (62) as a
function of the given a

†
k and ak. Finding this function for non-vanishing Hin seems to be

extremely difficult, as one is forced to separate the phase factors in the starting time-dependent
transformation and must find the decomposition (14). Therefore, a first step is to obtain the
resulting frequencies ω̂k(h). They are sufficient to determine, how the bare threshold for
h is modified by the internal interaction Hin, and allow for a perturbative treatment of the
eigenvalues.

The results of ω̂k(h) follow from equations (49), (31), (58), to be

ω̂k(h) =
√

(ωk + �ωk)2 + �2
k − |Vk|2h2

(ωk + �ωk)2 + �2
k

ωk. (64)

The quantities �ωk and �k denote the frequency shifts and damping rates of the correlation
functions (56).

The essential point of the results for ω̂k(h) is, that they show a threshold for the coupling
strength, h2 � h2

th, with

h2
th = min

k

{
(ωk + �ωk)

2 + �2
k

|Vk|2
}

. (65)
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This value is in accordance with dynamical considerations [7] which have been mentioned in
the introduction. The question, what will happen beyond this threshold, cannot generally be
answered. In the case of Hin = 0, the energy spectrum of H becomes continuous, and discrete
excitations ω̂k(h) no longer exist. For interactions Hin 
= 0, the behaviour will depend on
the structure and strength of the higher-particle interactions which up to now can just enter
into the results via frequency shifts and damping rates. These interactions can preserve the
discrete spectrum of Hin, which has been assumed from the beginning, but in this case the
states for h > hth, must be entirely different from those for Hin = 0, so that the subspace of
the Liouville space used in section 3 must be enlarged. One might speculate, that the situation
is similar to that of a phase transition.

We have confined the explicit evaluation in section 3 to the lowest nontrivial order.
The evaluation of the interactions V̂k1,k2k3(h) can be performed in a similar fashion, e.g.
by expanding equation (26) in powers of creation and annihilation operators and solving
the corresponding linear equations in terms of correlation functions. For the subthreshold
behaviour h2 < h2

th these interactions follow from the neglected terms in equations (26) and
(33) to be of the order of magnitude of the internal coupling Hin and thus will not play an
essential role for the low-temperature regime. As just mentioned the interactions become
crucial above this threshold, as the spectral structure of the Hamiltonian changes considerably.
Since the lowest nontrivial order of our perturbation expansion already breaks down we
suppose that such a regime calls for a completely different type of perturbation scheme. We
leave this point for further investigation.

5. Outlook

The steady state of periodically driven systems beyond linear response is important for
nonlinear resonance experiments in magnetic samples. For the parallel pump in ferromagnetic
materials one can use the coupled oscillators treated in this paper [7]. In this case the
Hamiltonian consists of the time-independent part H = Hharm + Hin given by equations (2)
and (3), while the pump term is a generalization of hH(1)

Hp = h̄h/2
∑

k

(
exp(−iωt)Vka

†
ka

†
−k + exp(iωt)V ∗

k aka−k

)
. (66)

The formulation of a steady state for this periodically driven system is closely related to the
unitary transformation discussed in this paper.

In [9] it was generally shown that for a macroscopic periodic Hamiltonian H +
h

∑
m exp(imωt)Hm, one can describe the time dependency of the statistical operator for

times longer than internal relaxation times by a statistical operator which is constructed with
the help of an adiabatically changing amplitude exp(εt)h, taking ε smaller than the inverse
recurrence time (cf [16–18] for applications). Omitting details one obtains for the steady state

ρst(t) = Z−1 exp{−βQ(t, h)Ha(exp(εt)h)Q†(t, h)} (67)

where the unitary operator Q(t, h) is nearly periodic with the driving period

Q(t + τ, h) = Q(t, exp(ετ )h) (68)

and Ha(h) is to be calculated from

Ha(h) = lim
t→−∞U(t, 0)†HU(t, 0) (69)

with the time evolution

∂

∂t
U(t, 0) = −ih̄−1

{
H + exp(εt)h

∑
m

exp(imωt)Hm

}
U(t, 0). (70)
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The initial state at t = 0 just determines the inverse temperature in equation (67). The result
for equation (69) is similar to the starting formula (18) in section 2. The difference is that in
the driven case H is independent of h, and the equation of motion (70) for U(t, 0) has a further
periodic time dependency. These points, however, also allow for the method of section 3,
if a suitable subset in Liouville space can be found. In some respect the calculation of (69) is
simpler than that of Ĥ, as the series for Ha(h) in powers of h is of the type (A.3). It is also
possible to find the power series expansion of the full exponent of ρst(t) in which only powers
of y = − exp(εt)h appear

Hst(t) = Q(t, h)Ha(exp(εt)h)Q†(t, h) = H + y
∑
m1

exp(im1ωt){L + m1ω − iε}−1Lm1H

+ y2
∑

m1,m2

exp(i(m1 + m2)ωt){L + (m1 + m2)ω − 2iε}−1Lm2

× {L + m1ω − iε}−1Lm1H + · · · . (71)

The consequence for our driven system is that, neglecting Hin in equation (71), one has
the same subspace as that used in section 3. Therefore, for H = Hharm with the pump term
(66), one can exactly evaluate the exponent (71) of the statistical operator which then reads

Hst(t)|ε→0 = const +
∑

k

h̄ωk sign(ωk − ω/2)√
(ωk − ω/2)2 − |Vk|2h2

×{
(ωk − ω/2)a

†
kak + h/2(exp(−iωt)Vka

†
ka

†
−k + exp(iωt)V ∗

k aka−k)
}

(72)

provided mink{|Vk|−2(ωk − ω/2)2} 
= 0. For the case Hin 
= 0, one expects that an
approximation corresponding to equation (28) will modify the result (72) by damping rates
and frequency shifts similar to equation (64). For this calculation however, the scaling (42)
with an ε smaller than the inverse recurrence time together with the thermodynamic limit must
be re-examined.

A former attempt to calculate ρst for the parallel pump [19] was restricted to the case
of a time-independent rotated Hamiltonian. Regarding four-magnon interactions, the author
could show that this interaction stabilizes the system in a way, which is known from the
very successful phenomenological S-theory [7]. The damping rates, however, could not be
incorporated in ρst, so that the threshold for the driving amplitude was reduced to zero. As the
approach of our paper provides a possibility for taking the damping rates in the Hamiltonian
into account, one can expect that taking all these ideas together, there is a chance of finding a
complete microscopic formulation for the steady state of a parallel pumped system.
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Appendix A. Properties of the transformed Hamiltonian

It will be shown that the transformed Hamiltonian Ĥ commutes with H(0). Further it is pointed
out that in some cases Ĥ can be obtained from a set of differential equations with respect to
the coupling.
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A.1. Differential equation for U(∞)H

According to equation (21) we must find limt→∞ U(t)H. Therefore a differential equation for
this quantity is established. For the formalism of section 2 the special decomposition (1) of H
is not needed. Thus for fixed h in H we introduce

Lx(t) = L − x exp(−εt)L(1) (A.1)

and make use of Lx=h(t) = L(t) and Lx=0(t) = L at the end. The equation of motion for
Ux(t) is defined as

∂

∂t
Ux(t) = iUx(t)Lx(t). (A.2)

So from its Laplace transform one easily finds the expansion of limt→∞ Ux(t)H =
lims→0 sWx(s)H into powers of x

lim
t→∞ U(t)H = H + x(L + iε)−1L(1)H + x2(L + 2iε)−1L(1)(L + iε)−1L(1)H

+ x3(L + 3iε)−1L(1)(L + 2iε)−1L(1)(L + iε)−1L(1)H + · · · . (A.3)

Applying L − xL(1) to this series yields

i(L − xL(1)) lim
t→∞ Ux(t)H = εx

∂

∂x
lim
t→∞ Ux(t)H. (A.4)

This equation can also be obtained without explicitly using the power series. For the validity
of the result it is important that the limit t → ∞ and the derivative with respect to x can be
interchanged.

A.2. Consequences for Ĥ

Let us define

Ĥx = lim
ε→0

lim
t→∞ Ux(t)H (A.5)

then one sees that

Ĥx=h = Ĥ Ĥx=0 = H. (A.6)

Taking ε → 0 in (A.4) implies

(L − xL(1))Ĥx = 0. (A.7)

This means, that for x = h, the following must hold:

[H(0), Ĥ] = 0. (A.8)

The differential equation (A.4) not only implies the commutator of Ĥ with H(0), but can
also serve to determine Ĥ itself. Define the projection operator Px onto the null space of
L − xL(1), then it follows from (A.7) that

PxĤx = Ĥx (A.9)

whereas equations (A.4) and (A.5) yield

Px

∂

∂x
Ĥx = 0. (A.10)

If one has a basis of the null space of L − xL(1), equation (A.10) provides a set of differential
equations for the coefficients of the basis vectors, and allows us to calculate Ĥx=h = Ĥ. We
will illustrate this possibility for two simple examples.
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The first example again shows the general form of Ĥ, although the method is not
appropriate for practical use. Let us have Hx = H − xH(1) = H(0) + (h − x)H(1) an
energy spectrum which is not degenerate

Hx |nx〉 = En(h − x)|nx〉 〈nx |mx〉 = δnm (A.11)

then Px acting onto F in Hilbert space gives PxF = ∑
m |mx〉〈mx |F |mx〉〈mx |, so that from

equations (A.9) and (A.10) it follows that

Ĥx =
∑

n

cn(x)|nx〉〈nx | Px

∂

∂x
Ĥx =

∑
n

c′
n(x)|nx〉〈nx | = 0 (A.12)

i.e. c′
n(x) = 0. Together with cn(x) = cn(0) = En(h) it therefore results in

Ĥ = Ĥx=h =
∑

n

En(h)|n(0)〉〈n(0)| (A.13)

which means that the Hamiltonian H is transformed to the eigenbasis {|nx=h〉 = |n(0)〉} of
H(0). It is clear that this is just another way to obtain the result of the adiabatic theorem. In
the approach through equation (A.10) however, diverging phase factors are eliminated from
the beginning.

If the null space of L − xL(1) occurring in equation (A.10) can be restricted to a finite
subspace, then the resulting differential equations may be useful to calculate Ĥ. We will
illustrate this point with an example. For simplicity we take one oscillator with

H(0) = h̄ωa†a H(1) = h̄/2V (a†a† + aa). (A.14)

As L − xL(1) does not lead out of the space spanned by a†a†, aa, a†a, 1, Px acting onto this
space produces linear combinations of the two possible operators, Hx = H(0) + (h − x)H(1),
and unity. We, therefore, can write

Ĥx = c0(x) + c(x)Hx (A.15)

with the initial condition Ĥx=0 = Hx=0. This ansatz fulfils equation (A.9), whereas
equation (A.10) yields

Px

∂

∂x
Ĥx = c′

0(x) + c′(x) Hx − c(x)PxH(1) = 0. (A.16)

So with the explicit expression for PxH(1)

PxH(1) = lim
ε→0

iε(L − xL(1) + iε)−1H(1)

= −V 2(h − x){ω2 − V 2(h − x)2}−1(h̄ω/2 + Hx)
(A.17)

one obtains the differential equations

0 = c′(x) + V 2(h − x){ω2 − V 2(h − x)2}−1c(x)
(A.18)

0 = c′
0(x) + h̄ωV 2(h − x){2(ω2 − V 2(h − x)2)}−1c(x).

Integration with the initial conditions c(0) = 1 and c0(0) = 0 yields the well-known result

Ĥ = Ĥx=h = c0(h) + c(h)H(0)

= h̄/2(
√

ω2 − V 2h2 − ω) + h̄
√

ω2 − V 2h2a†a. (A.19)

Whether the differential equations (A.10) can be used in more general cases by taking an
ansatz in a restricted null space, Ĥx = ∑′

ν cν(x)PxGν , and truncating Px
∂
∂x
Ĥx remains the

question. There seems to be a chance of finding such an approach for the system treated in
the text, as our basic results follow from algebraic methods for inverting Liouville operators.
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Appendix B. On the thermodynamic limit

Let

f�k(t) =
∑


f exp(it) g�k(t) =
∑
′

g′ exp(i′t) (B.1)

denote the correlation functions appearing in equation (53) for a system of finite size. We
assume that sensible thermodynamic limits �k → 0 exist. Time-reversal symmetry of the
correlation functions and the properties of the vacuum state imply that

f = f− g′ = g−′ g′=0 = 0. (B.2)

The spectrum of the convolution which is determined by

f�k(t) ⊗ g�k(t) =
∫ ∞

−∞
F�k(ω) exp(iωt) dω (B.3)

consists of course of a sum of distributions

F�k(ω) =
∑

=′

δ(ω − ) − δ(ω − ′)
i( − ′)

fg′ + i
∑
′ 
=0

δ′(ω − ′)f′g′ . (B.4)

Applying Laplace transform to equation (B.3) and taking the limit s → 0, we arrive at

lim
s→0

(∫ ∞

0
exp(−st)f�k(t) dt

∫ ∞

0
exp(−st)g�k(t) dt

)
= lim

s→0

∫ ∞

−∞

1

s − iω
F�k(ω) dω = −

∫ ∞

−∞

1

iω
F�k(ω) dω. (B.5)

For the last step we need that the final integral exists. Straightforward algebra using the
properties (B.2) shows that the value of the integral is given by f=0

∑
′ 
=0 g′/(′)2 and

that it remains finite in the thermodynamic limit. If we now perform the thermodynamic limit
�k → 0 in equation (B.5) we obtain

lim
�k→0

lim
s→0

(∫ ∞

0
exp(−st)f�k(t) dt

∫ ∞

0
exp(−st)g�k(t) dt

)
= −

∫ ∞

−∞

1

iω
F�k→0(ω) dω =

∫ ∞

0
f�k→0(t) dt

∫ ∞

0
g�k→0(t) dt . (B.6)

The last expression just follows using the inverse Fourier transform of equation (B.3) and
observing that the spectrum according to equations (B.2) and (B.4) obeys the symmetry
F�k→0(ω) = −F�k→0(−ω).
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